
AP Computer Science: Java Programming Page 1.1

Project 1: Points and Rectangles

In completing this project you will use the BlueJ IDE to write a definition for a class
that models a rectangle. You will also have the opportunity to learn about Java’s
graphics capabilities and gain more experience with the static Math methods.

This project begins with instructions on how to prepare the BlueJ IDE for a new
project. The main body of the project then falls into three parts. In Part A you will
write the definition for the APRectangle class. Parts B and C are optional; they are
provided for students who like more of a challenge. In Part B you will write code to
draw a rectangle in a graphics window. In Part C you will explore how the rectangle
can be rotated.

Preparing BlueJ

1) Start the BlueJ IDE. Choose New Project… from the Project menu. Your
teacher may have set up a folder into which all students' Java source code
files are to be saved. If so and if this folder does not appear in the New
Project dialog, then navigate to it in the dialog’s tree control in the usual way
so that its name appears in the “Look In” selector (see Figure 1).

Figure 1: The New Project Dialog.

2) If this is your first project with BlueJ, you should create your own personal
source code folder that will contain your various project files. Your teacher
may assign you your own personal folder name. Click the “Create New Folder”
icon — the second icon to the right of the “Look In” selector. A new folder
icon appears in the body of the dialog (see Figure 2).

Figure 2: Creating Your Personal Source Code Folder.

3) Click the “New Folder” label once, change it to your personal folder name, and
press the Enter key. Double-click the folder icon to the left of your new
personal folder’s name to transfer that name into the “Look In” selector. Enter
the new project’s name, “Project1” (without the quote marks), into the File
name box near the bottom of the New Project dialog, and click the Create
button. The New Project dialog goes away and the new project’s name
appears in the main BlueJ application window’s title bar (see Figure 3).

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.2

Figure 3: Project1 — Ready To Go!

BlueJ is now set up for you to begin programming.

Part A: Building a Rectangle Class

This is a required part of this project. In this part, you write class definitions for
APPoint and APRectangle and work with the main method. Work through each of
the numbered items in order.

1) Click the New Class… button. Enter “MainClass” (without the quote marks)
into the Class Name box of the Create New Class dialog, leave the Class Type
selection as “Class”, and click the Ok button. A colored rectangular icon
representing the newly-created MainClass class appears in the BlueJ window
(see Figure 4).

Figure 4: The MainClass icon.

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.3

2) Right-click the MainClass icon.1 On the resulting context menu, choose the
Open Editor item. An editor window containing sample code for the
MainClass class appears (see Figure 5).

Figure 5: The MainClass Editor Window.

Edit the sample code in the editor window until it reads as shown in Figure 6:

Figure 6: Initial MainClass Definition.

1 Macintosh users should read “right-click” as ctrl-click.

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.4

Click the Close button on the editor window. The changes you have made to
the code are automatically saved.

3) Click the Compile button on the main BlueJ window. After a short pause, the
MainClass icon should lose its striping, thereby indicating that the class has
compiled successfully. If not, the editor window will automatically reopen and
an error message will be displayed in the section below the code area. Correct
the problem identified by the error message, close the editor window, and try
to compile the class again.

4) Once the class has compiled successfully, open the BlueJ Terminal by
choosing the Show Terminal item on the View menu. Right-click the
MainClass icon and then choose the signature — void main(String[] args)
— of the main method on the context menu. Click the Ok button on the
resulting Method Call dialog. The dialog goes away and the exclamation
“Done!” appears on the BlueJ Terminal.

5) Create a new class called “APPoint” (see Note 1 on the last page of this
document). A colored rectangular icon representing the newly-created
APPoint class appears in the BlueJ window. Right-click the APPoint icon,
choose Open Editor, and change the APPoint class definition to the following
(or copy-and-paste the definition from the exercise on page 4 of the “A Point
Class” section of the online course, and then delete the move method):

public class APPoint
{

private double myX;
private double myY;

public APPoint(double x, double y)
{

myX = x;
myY = y;

}

public double getX()
{

return myX;
}

public void setX(double x)
{

myX = x;
}

public double getY()
{

return myY;
}

public void setY(double y)
{

myY = y;
}

}

Compile the APPoint class (either by clicking the Compile button on the
APPoint class editor window or by right-clicking the APPoint class icon in the
main BlueJ window and choosing Compile). Then close the APPoint class
editor window. To test that the APPoint class works, reopen the definition of

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.5

MainClass (by right-clicking its icon in the main BlueJ window and choosing
Open Editor), insert this definition of the static method printAPPoint before
the definition of main:

public static String printAPPoint(APPoint p)
{
 return "(" + p.getX() + "," + p.getY() + ")";
}

and change the definition of main to:

public static void main(String[] args)
{

APPoint p = new APPoint(1.0, 2.0);
System.out.println("p is " + printAPPoint(p));
System.out.println("Done!");

}

Compile and execute the program (see Note 2 on the last page of this
document). The BlueJ Terminal should display the message

p is (1.0,2.0)
Done!

If an error message is displayed instead, read the message carefully and
make a corresponding fix to your program. Do not proceed to the next step
until you have successfully executed your program.

[Notice incidentally that a dashed arrow has appeared in the main BlueJ
window leading from the MainClass icon to the APPoint icon. This is a “uses”
arrow. It provides a visual reminder to us that the MainClass class “uses” the
APPoint class.]

6) Create a new class called “APRectangle” (see Note 1 on the last page of this
document) and edit the APRectangle source file so that it contains the
following class definition:

public class APRectangle
{

private APPoint myTopLeft;
private double myWidth;
private double myHeight;

public APRectangle(APPoint topLeft, double width, double height)
{

myTopLeft = topLeft;
myWidth = width;
myHeight = height;

}
}

Add accessor instance methods for the three instance variables, and then
click the Compile button on the APRectangle class editor window to compile
your code and check for errors.

Reopen the definition of MainClass and insert a definition of the static
method printAPRectangle after the definition of printAPPoint. This method
should be defined in such a way that, if it is applied to the APRectangle
object whose top left corner is the APPoint object with coordinate (-5.0,3.6),

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.6

whose width is 7.5, and whose height is 6.3, then the following string is
returned:

"[APRectangle (-5.0,3.6) 7.5,6.3]"

To achieve this, you will probably find it useful to call upon the printAPPoint
static method as well as all three of the APRectangle class’s accessor
instance methods. Once you have completed this definition, modify the main
method so that, when you compile and execute your program, it tests that
the program is working correctly.

7) Add each of the following instance methods to the APRectangle class. In each
case, modify the main method to test your definition. You may find it useful to
use the BlueJ debugger while performing these tests. [For information on
using the debugger, refer to the file Using the BlueJ IDE that may be
downloaded from the online course.]

a) Add modifier methods for the three instance variables.

b) Add a getTopRight method that returns the APPoint object that
represents the point at the top right corner of the rectangle. Hint: the
return statement should be of the form:

return new APPoint(…);

In the optional parts of this project, you will draw APRectangle objects
in a window whose x-coordinates increase to the right. So the APPoint
object at the top right corner of an APRectangle object should have an
x-coordinate that is greater than that of the APPoint object at its top
left corner.

c) Add getBottomLeft and getBottomRight methods that return the
APPoint objects at the bottom left and bottom right corners,
respectively. In the optional parts of this project, you will draw
APRectangle objects in a window whose y-coordinates increase
downward. So the APPoint objects at the bottom two corners of an
APRectangle object should have y-coordinates that are greater than
that of the APPoint object at its top left corner.

d) Add an area method that returns the area of the rectangle.

e) Add a shrink method that takes a single argument, a double d, and
that shrinks the rectangle to d% of its current size, that is,

myWidth *= (d / 100.0);
myHeight *= (d / 100.0);

This concludes Part A of this project.

Part B: Drawing the Rectangle

This part of the project is optional. In this part, you construct a stand-alone Java
application that will draw your rectangle.

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.7

1) Create a new class called “APCanvas” (see Note 1 on the last page of this
document). In the APCanvas class editor window, replace the class definition
with the following, making sure to include the two import statements:

import java.awt.*;
import javax.swing.*;

public class APCanvas extends JPanel
{
 public APCanvas()
 {
 }

 private void paintMe(Graphics g)
 {
 }

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 paintMe(g);
 }
}

(The import statements let the Java compiler know where to look for the
Graphics and JPanel classes. The use of import statements and the use of
the keyword extends that appears in the first line of the class definition are
explained later in the online course.)

Compile this class by clicking the editor window’s Compile button.

2) In the MainClass class editor window, insert these two import statements at
the start of the file:

import java.awt.*;
import javax.swing.*;

Then change the definition of the main method so that it reads as follows:

public static void main(String[] args)
{
 JFrame frame = new JFrame("AP Java Test ");
 frame.getContentPane().add(new APCanvas());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setSize(200,224);
 frame.setLocation(100, 100);
 frame.setVisible(true);
}

(The reason why we set the height of the JFrame to be 24 more than its width
is to provide room for the window’s title bar.)

Compile and execute your program (see Note 2 on the last page of this
document). When you are successful, running this program will produce a
blank window — possibly hidden behind other windows — with the caption AP
Java Test (see Figure 7).

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.8

Figure 7: The Stand-alone Drawing Application.

3) Close the blank AP Java Test window by clicking the X button in its top right
corner. Then modify the paintMe method of the APCanvas class so that the
method body consists of this statement:

g.drawLine(0, 0, 200, 200);

Save the modified APCanvas class and then compile and execute the program.
This time, the AP Java Test window that appears has a single solid line drawn
from top left to bottom right.

The instance g of the Graphics class represents a 2-dimensional Cartesian
plane with coordinate (0,0) in the top left corner, and with x-coordinates
increasing to the right and y-coordinates increasing downward. The drawLine
method of the Graphics class draws a solid line across this plane from the
point specified by the first two arguments to the point specified by the last
two arguments. Experiment with drawLine until you are thoroughly familiar
with its effect.

4) At the start of the APRectangle source file, add these two import statements:

import java.awt.*;
import javax.swing.*;

Then add a new instance method with the signature draw(Graphics g) to
the APRectangle class that draws the rectangle by calling the drawLine
method of g four times:

public void draw(Graphics g)
{

APPoint topLeft = myTopLeft;
APPoint topRight = getTopRight();
APPoint bottomLeft = getBottomLeft();
APPoint bottomRight = getBottomRight();

g.drawLine((int)topLeft.getX(), (int)topLeft.getY(),

 (int)topRight.getX(), (int)topRight.getY());

// . . .
}

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.9

Note how the variables topRight, bottomLeft, and bottomRight capture the
positions of the vertices before drawing takes place. This avoids having to call
the corresponding methods repeatedly, which would make the program less
efficient. Notice also that we cast all the coordinates to ints before passing
them as arguments to the drawLine method. We must do this because that
method expects its arguments to be ints.

Test your code by compiling and running your program. You could, for
example, change the body of the paintMe method of the APCanvas class so
that it reads like this:

APPoint p = new APPoint(20.0, 60.0);
APRectangle r = new APRectangle(p, 65.0, 45.0);
r.draw(g);

This completes Part B of this project.

Part C: Rotating the Rectangle

This part of the project is also optional. In this part, you use Math methods to rotate
the rectangle.

1) To the class definition for APRectangle, add an instance variable myAngle of
type double. In the constructor, set myAngle to zero, and provide accessor
and modifier instance methods for myAngle. The instance variable myAngle
represents a counterclockwise rotation, measured in radians (see Note 3 on
the last page of this document), with the center of rotation at the top left
corner of the APRectangle instance (see Figure 8).

Figure 8: Rotating the Rectangle.

2) To calculate the APPoint representing the top right corner we may use the
Java methods Math.sin and Math.cos (see Figure 9) as follows:

public APPoint getTopRight()
{

double x = myWidth * Math.cos(myAngle);
double y = myWidth * Math.sin(myAngle);

return new APPoint(myTopLeft.getX() + x, myTopLeft.getY() - y);
}

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.10

Figure 9: Using sin and cos.

In the above code, we subtract the value of y from the y-coordinate of the
APRectangle object’s top left corner because the top right corner is rotated
upward and we are drawing our rectangles in a window whose y-coordinates
increase downward.

Once we have the position of the top right corner, we can locate the bottom
right corner (see Figure 10) as follows:

public APPoint getBottomRight()
{

APPoint t = getTopRight();

double x = myHeight * Math.sin(myAngle);
double y = myHeight * Math.cos(myAngle);

return new APPoint(t.getX() + x, t.getY() + y);
}

Figure 10: Finding the Bottom Right Corner.

Modify the class definition for APRectangle to include these methods, and
rewrite the method getBottomLeft to take account of the rectangle’s
rotation.

Rewrite the paintMe method of the APCanvas class to test that your rectangle
draws correctly at a variety of rotations. You may use the built-in Java
constant Math.PI as follows:

APPoint p = new APPoint(100.0, 100.0);
APRectangle r = new APRectangle(p, 50.0, 25.0);
r.setAngle(Math.PI / 6);
r.draw(g);

3) Using a for loop and the shrink method of the APRectangle class, try to
reproduce the display shown in Figure 11.

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

AP Computer Science: Java Programming Page 1.11

Figure 11: A Seashell!

This completes Part C of this project.

Notes

1) To create a class, follow the procedure used to create the MainClass class. That is, click the New
Class… button. Enter the name of the class into the Class Name box of the Create New Class
dialog (the name you use must contain no spaces or punctuation), leave the Class Type selection
as “Class”, and click the Ok button.

2) To compile and execute the program, click the Compile button on the main BlueJ window. If any
class icon retains its striping, right-click the icon and choose Compile. If the BlueJ Terminal is
not open, choose Show Terminal on the View menu. Finally, right-click the MainClass class
icon, choose the signature — void main(String[] args) — of the main method, and then click
the Ok button on the Method Call dialog.

3) All Java trigonometric functions use angles measured in radians. Measured in degrees, a full turn
is 360, whereas in radians a full turn is 2π, or about 6.28. That is, 360° = 2π. So, for example,
180° = π, 90° = π/2, 30° = π/6, and so on.

Copyright © 2009 Institute for Mathematics and Computer Science. All rights reserved.

	Project 1: Points and Rectangles
	Preparing BlueJ
	Part A: Building a Rectangle Class
	Part B: Drawing the Rectangle
	Part C: Rotating the Rectangle

