The Price of Free for Gifted Students, Part 2: Curriculum


March 29, 2012 Filed under: Curriculum Development,Gifted And Talented,Online Classes,STEM Education IMACS Staff Writer @ 7:00 am

After school, weekend and online programs in math and computer science for gifted children who enjoy fun, academic challenges.

In our prior blog post where we discussed the importance of effective teachers for gifted students, we also made the point that such teachers should be armed with higher quality curricula better geared toward bright kids. This week, we delve more deeply into what raises the quality of curricula and renders them more suitable for bringing out the best in talented students.

Fast Forward vs. Delve Deeper

Let’s start with the obvious. Gifted students often understand new information after having it explained to them once. This is in contrast to a typical student who benefits meaningfully from review and reinforcement of new topics. There may be times when gifted children benefit from review, but they generally find repetition unutterably boring. Consequently, bright kids who are subjected to curricula that emphasize review can develop a dislike for school or, in the worst case, of learning.

Advocates of free online resources often point to online technology as a remedy in situations like this because you can skip over the boring parts of a lesson and cover more topics. But who wants to spend time and mental energy searching through a lesson to avoid the repetitive parts? More importantly for talented children, are we really aiming for quantity of topics over quality of learning as a badge of honor for the brightest among us? Gifted students’ time would be better spent gaining a deeper understanding of a subject using material that was specifically designed with their ability level and thirst for knowledge in mind.

Challenge and Failure as Preparation for Success

Online curriculum development for talented students is about more than just going faster and avoiding repetition. It’s about presenting challenging ideas along with the appropriate interactive tools to explore and understand them. It’s about asking questions that require genuine thought to answer rather than just a cursory understanding—or worse, a simple memory—of something. It’s about asking questions in such a way that, in the process of determining the answer, the student’s understanding gets deeper.

Parents and administrators should recognize that accelerating through standard curricula is not the same as studying coursework designed to challenge the gifted mind. Challenging talented students is essential for putting them on a path toward future success. These kids have the potential to solve our most intractable problems and invent products and processes not yet imagined. As anyone who has accomplished even one of these amazing feats will tell you—it’s not a sprint but a marathon fraught with many false turns. This relates to the much-quoted findings by Stanford psychologist Carol Dweck that praising intelligence undermines motivation and performance as compared with praising effort. A child who has not learned to put forth great effort in conquering ability-appropriate challenges or in developing resilience in the aftermath of failure will never reach his or her full potential.

Address Misunderstandings Immediately

For many subjects, including mathematics and computer science, ideas learned at one stage serve as the foundation for learning more complex ideas at later stages. Likewise, a misunderstanding of an earlier concept jeopardizes the understanding of future concepts that build upon it. It can be difficult to dislodge misconceptions that have had some time to settle:

Thus, any praiseworthy online education program should cause students to address a misunderstanding at the moment that they are having it. If you wait until some later time to give a student corrective feedback on their work, the moment of maximum learning has already passed. Remember that we’re talking about young students who are simultaneously learning various new ideas across multiple subjects. When a student is already focused on learning the next topic, it’s less effective to try to bring his or her mind back to an “old” idea.

How an online education program goes about detecting and addressing flaws in student understanding is critical to whether the program is really delivering on its promise to teach in the truest sense of the word. This is not a trivial exercise that can be accomplished by a system that instantly tells you whether a multiple choice selection or one-word answer is correct. Gifted kids can typically regurgitate information from memory or reflect back basic knowledge without much effort. But this doesn’t mean that they understand a topic at a depth commensurate with their ability. Any online curriculum that purports to educate yet relies on several, even many, simply structured questions as a measure of true understanding is short-changing its students, especially the bright ones.

Simply put, talented online students deserve curricula that address their unique intellectual needs along with technological tools designed to fit the particular curriculum and not the other way around. They deserve more than the same material they can get in school with improved presentation and a fast-forward button. Delivering on the promise of educating students online is possible, but it takes much more thought, planning, and investment to do than is widely accepted in the current media coverage and commentary.

Are you a gifted and talented middle or high school student? IMACS offers online courses designed just for you! Take our free aptitude test. Solve weekly IMACS logic puzzles on Facebook.

Share

The Price of Free for Gifted Children


March 15, 2012 Filed under: Gifted And Talented,Online Classes,STEM Education IMACS Staff Writer @ 7:00 am

After school, weekend and online programs in math and computer science for gifted children who enjoy fun, academic challenges.

Mathalicious blog recently posted a well-written and compelling article about the consequences of our nation’s sudden elevation of the popular video tutoring Web site, Khan Academy. If you haven’t read the piece, you absolutely should because it explains beautifully the key reasons why parents and school administrators should be cautious about jumping on the bandwagon of free, technology-based resources as a means of effective teaching.

We won’t rehash here what’s already been said well by Mathalicious, nor do readers of this blog who like KA need to rally to its defense. IMACS acknowledges that KA is a valuable resource that has a place in the overall education portfolio for many students. But we also strongly believe that KA, or whatever the next free resource to be Web-ified is, is no substitute for high-quality curricula and the effective teaching thereof. This is particularly true for gifted and talented children.

Free Resources Are Good at Presenting Information and Sparking Curiosity

Children, bright ones in particular, are born self-directed and self-taught. As they enter school and progress through the regimented structure of age-based, test-driven instruction, it’s no surprise that this natural thirst for learning diminishes. For a gifted child this is intellectual torture, and the pain has only spread across our nation as budget cuts erode the quality of or eliminate altogether public school gifted programs. So it’s no wonder that many talented children and their parents have come to value a Web site like KA.

What’s not to like? KA offers a myriad of topics for a curious mind to explore. You pick which video to watch, and you decide when to move on if it’s boring. And KA’s founder, by most accounts, is pretty good at explaining concepts in a non-threatening way. For typical kids, this can be a superior alternative to classroom instruction. For gifted kids, this is a wonderful way to spark curiosity and access above-grade-level material. Those of us from an older generation are reminded of cherished times flipping through encyclopedia volumes, letting the books fall open where they may, and reading about some new topic that we’d never heard of before. Whereas the World Book cost parents a small fortune and took up a big chunk of bookshelf space, KA is free and fits on the smartphone in your pocket! So far, so good. Here comes the “but.”

Pedagogy Still Matters, Especially for Mathematically Talented Kids

But how does that spark become a burning fire of passion, dedication, effort, and tenacity—qualities necessary for a gifted child to achieve his or her full potential? A key component of the answer is teachers. More specifically, teachers who understand how to inspire bright children, who can guide them when they struggle, and who know how to unleash the power of their natural talent. Optimally, these teachers should be armed with higher quality curricula better geared toward kids who only need to be told things once. They should have the experience to know that the places where talented kids struggle are often different from the usual stumbling blocks for the general population, and they should understand that high-fliers sometimes need help in overcoming the fear of failure.

Nowhere is this more evident than in math where the abstract nature of its concepts and language call for an experienced and interactive guide. To a gifted child, the difference between one-way, rules-based, memorization-laden math instruction and student-involved, teacher-guided, reasoning-based interaction is like intellectual starvation versus a bountiful feast. The nourishing environment of the latter allows mathematically talented minds to devour, understand, apply, and sometimes grow the body of knowledge. No pre-recorded video that restates, however pleasantly, the usual instruction found in US math classes, with the added benefit that you can rewind and repeat for reinforcement, is going to elevate a mathematically bright child to the next level.

Bright Online Students Should Have Access to Supportive Instructors

At IMACS, we made a deliberate choice to use an interactive teaching approach that incorporates substantial student-led exploration guided by effective teachers. Our collective experience on how talented kids learn best, which questions they tend to ask, and where and why they tend to struggle has been gathered over decades of teaching our curriculum in a classroom setting. This wisdom has been painstakingly built in to our eIMACS online courses, which feature tools that provide immediate feedback at exactly the moments students most frequently need it.

Needless to say, a gifted child is wonderfully unique and creative. So it comes as no surprise to us that our students come up with questions from time to time that we hadn’t anticipated. This is exactly why each eIMACS student is assigned a principal IMACS instructor to answer these questions and provide individualized guidance when needed.

We know what you’re probably thinking, and yes, this blog post is self-serving. But it’s also what we genuinely believe because we’ve borne witness to the success of these ideas, having taught thousands of bright students this way over the years. As such, we feel compelled to share our experience with readers, especially parents and others who may be making decisions now or in the future on how to best foster mathematical talent (or any talent for that matter). As with coaching in elite athletics, effective pedagogy is essential to the full and fulfilling intellectual development of gifted children, and its value should not be discounted so readily. Don’t let talk of free videos convince you otherwise.

Looking for online courses in gifted math and computer science with top-notch teachers? Try IMACS! Take our free aptitude test. Solve weekly IMACS logic puzzles on Facebook.

Share

Student Profile: Hossain Md. Jihad Turjo, Aspiring Video Game Designer


March 1, 2012 Filed under: AP Computer Science,Computer Programming,Online Classes IMACS Staff Writer @ 7:00 am

After school, weekend and online programs in math and computer science for gifted children who enjoy fun, academic challenges.
eIMACS student, Hossain Md. Jihad Turjo, takes
a break from his studies to enjoy the sunshine.

Did you know that eIMACS serves students in over 10 countries around the world? This week, our blog post features current student, Hossain Md. Jihad Turjo. Turjo is a talented 11th grader at Mastermind School in Dhaka, Bangladesh. In addition to excelling in his eIMACS courses, he has also earned top marks from other prestigious online programs for bright students, including Johns Hopkins Center for Talented Youth (CTY) and Stanford’s Education Program for Gifted Youth (EPGY). When not immersed in his studies, Turjo enjoys reading novels and has even had three published book reviews for CTY’s Imagine magazine:

“Guns, Germs, and Steel: The Fates of Human Societies” by Jared Diamond
“H.I.V.E.: Higher Institute of Villainous Education” by Mark Walden (Click on the ‘Preview’ button to read Turjo’s review.)
“The Boy Who Harnessed The Wind” by William Kamkwamba and Bryan Mealer

How did you first become interested in computer science?

My first programming experience of any sort was at school in 8th grade – we had the basics of Visual Basic as part of our coursework curriculum. There were quite a few incidents which hooked me to programming during the six months or so that I had Information and Communication Technology (ICT) at school as part of my curriculum. An example of such a case would be when we were learning to program a calculator for adding numbers with the digits 0, 1 and 2. The “calculator” would have virtual “buttons” labeled +, 0, 1, 2 and =, and would have a screen for displaying the numbers typed in or the result.

Of course, the very thought was horrid to me – the numbers lacked 70% of the digits, and I could only do addition. At the moment, our teacher was not inclined to be very explorative either. So I decided I could do better, and pretty soon I had a calculator with all the digits, an operation display alongside a numbers display, all the operations instead of simply addition, and functions for taking nth roots, raising numbers to any exponent and reciprocating numbers.

That was the kind of small trivial thing that later snowballed into a massive interest in computer science and programming – and eIMACS was perfect for it.

Residing in Bangladesh, how did you find eIMACS, and what made you decide to take one of our online computer courses?

I found eIMACS while browsing the net for computer science courses that are on offer for young and talented students. So I made an inquiry about what courses might be on offer for me, considering that I was a complete amateur in the field of computer science. The next day, I spoke on the phone with a senior IMACS instructor who suggested that I start off with University Computer Science I, that apparently being a very good beginner’s course. So I took the Aptitude Test, managed a good enough score, and started the course that very day. I guess the main deciding factors in what made me choose eIMACS was the promptness and enthusiasm of the instructor’s reply, the fact that he offered to be my instructor even though I was a novice, and the course description on the IMACS Web site.

As a student who has taken or is taking several online courses in math and science from different vendors, how did your experience with eIMACS compare?

In addition to UCS1 from eIMACS, I have taken Honors Chemistry, Honors Biology, and AP Calculus BC from CTY and AP Physics C: Mechanics from EPGY. I am now continuing AP Statistics from Northwestern University’s Center for Talent Development (CTD).

The courses from eIMACS and CTY were all self-paced allowing me to work on the lessons and the tests at whatever time suited me most, contrasted against a fixed course in which lessons are taken by an instructor, normally during his office hours. That was a thing I really liked about eIMACS and CTY – the self-paced option, seeing that a fixed course would be extremely hard for me to keep up with due to the huge time zone gap. Also the quality of presentations for both the eIMACS and CTY courses was really high.

CTD’s AP Statistics course, which has been a satisfactory experience thus far, is next best, and then EPGY’s Mechanics course after that.

UCS1 from eIMACS is the clear winner when it comes to the best course among these. It started at a very basic level in a way that made it extremely easy for me, a novice to understand. I loved the user interface and the way computer science code was introduced to the rookie. The course got progressively more challenging and, I might add, more fun. An awesome thing about UCS1 was the way the tests were taken entirely online. I mean, it is kind of tedious to have to write out answers on a give question paper, scan it and then e-mail it, the way I did it with CTY. But given that one was a math course, where steps and working are extremely important, I guess that was the most suitable option for CTY.

As to instructor availability, I think it’s reasonable enough to say my IMACS instructor was the one I had the most contact with. He was simply more cheery, more communicative and more encouraging than my instructors from the other programs. I’m not saying the others didn’t have those qualities, but my IMACS instructor had it to a great extent.

UCS1 is taught using the programming language Scheme, whereas many introductory courses take students straight into Java, especially since the College Board’s Advanced Placement exam is currently in Java.  What’s your view on the eIMACS approach?

I felt that UCS1 did an awesome job in introducing me to the field of computer science. The approach of using Scheme seems to me to be much better. I have seen Java code for web pages a few times, and it did look quite a degree more complex than Scheme. Hence I would say the IMACS approach in using a simpler language (simple is a relative term) as a beginning language is all the more effective for its simplicity. I found I was able to focus on learning the programming concepts instead of worrying about whether I was getting the syntax right. And if anyone was very interested in Java, they can always take the AP Computer Science course from IMACS. So I would say that the IMACS approach is a very effective method.

Your goal is to major in computer science at a US university. What would you like to do after that? Do you have a career vision in mind?

I would simply love to become a top programmer or “Head Game Designer” at someplace like Microsoft or Sega. There are some pretty awesome games out there and someday I want to be the one bringing to life better themes than those games did, coupled with a much better game-playing experience. Sky Target and The House of The Dead series are classics that are impossible to forget – both Sega productions. Someday I hope I can do better.

IMACS delivers flexible and high-quality online computer science courses anywhere in the world. Register for our free aptitude test. Play along with our weekly IMACS logic puzzles on Facebook.

Share